
www.wzmicro.com

1 of 3

Unidirectional Wireless RF
Transmitting & Receiving

Digital in, digital out, with no wires!!! Yes, it can be that easy but there are some
things you will find out about going wireless that you may not have counted with
wired connection.
This application note will guide you through a simple RS232 link and illustrate how
easy these devices are to use as long as you know how to handle a couple
wireless phenomenon and plan your project to take these into account.

In Figure 1 below, we have illustrated the simplest RS232 link possible. It links a
computer to a microcontroller using the 418/433MHz transmitter and the
418/433MHz receiver.
This circuit will work with most computer's RS232 ports because most use
standard digital voltage levels to determine if a signal is a "1" or a "0".

Figure 1: Simplest RF circuit (power & ground not shown).

In this example, we'll say the microcontroller is transmitting a packet of data with
some sort of information. Something like:
<device ID><data byte 1><data byte 2><data byte 3><data byte 4><data byte 5>
Let's also put some ASCII readable data in the packet. Something like:

A12345

If a simple terminal program was used on the computer, one might see something
like the following:

@#23lk 23 @# __(*& A12345 #@@23@#44

www.wzmicro.com


www.wzmicro.com

2 of 3

The information we are transmitting is seen but it is surrounded by garbage data.
This garbage data is simply static the receiver is picking up, just as you pick up
static on a television channel where there is no transmission. The transmitter only
transmits the "1"s in your data packet. "0"s are simply periods of no transmission.
The receiver is able to tell a "1" from a "0" when transmitted closely together but at
other times, the receiver will try to make out data when there is none. Although
this may seem counterproductive, it gives a much greater transmission distance
since the receiver can constantly adjusts its gain, looking for data even when the
signal is very weak.

One way of overcoming the static is to simply add a few unique bytes to the first of
the packet that will identify good data to the program running on the computer.
This is sometimes called a "header". For example, let's change our packet to be:

RFRFA12345

Now the computer would see something like:

@#23lk 23 @# __(*& RFRFA12345 #@@23@#44

It would be simple for a program to look for the "RFRF" pattern and then read in
the device ID and data from within the packet.
This technique should work fine for many applications but we would also like to
suggest using some sort of error detection and/or correction scheme that will
ensure the integrity of the data. There are many different ways to go about doing
this. The simplest is a checksum, where each byte of data is added together and
the result is transmitted at the end of the packet. The receiver can then does the
same addition, compare the result to the checksum, and have some confidence
that the data was transmitted without interference. Remember, when using radio,
there is always a possibility of interference from another radio source such as a
garage door opener, nearby intercom, CB radio, etc….
A simple checksum for our example can be obtained by adding up the ASCII
values for each byte in our packet. You can choose whether you wish to use the
header in the calculation. If we leave out the header, our checksum is:

"A" + "1" + "2" + "3" + "4" + "5"
65 + 49 + 50 + 51 + 52 + 53 = 320

For this example, we will allocate only one byte at the end of the packet for the
checksum information. A value of 320 "rolls-over" because one byte can only
handle a value up to 255. The value after roll-over is the remainder of 320/256, or
64. 64 is the "at" symbol in the ASCII character set so our transmitted packet now
looks like:

RFRFA12345@

mailto:@#23lk
mailto:@#
mailto:@23
mailto:@#44
www.wzmicro.com
mailto:@#23lk
mailto:@#
mailto:@23
mailto:@#44


www.wzmicro.com

3 of 3

This is our completed packet with a simple header and checksum.
Now, let's have a quick review of how this packet is transmitted and received.
Simply, the transmitter will preface every packet with "RFRF". This is done simply
to allow the receiving device to recognize a packet of data from static. Then, the
packet data is sent. In our example, this was a device id of "A" followed by the
data bytes "12345". Finally, the transmitter sums up all the bytes from within the
packet to get a checksum. In this example, the checksum was 320. Since we
allocated only one byte to the checksum, we divided by 256 and took the
remainder. The result was 64 or the "@" symbol in ASCII. The transmitter is
constantly receiving data from the RF receiver. Initially, it looks for nothing but an
"R". If it receives an "R", then it looks for an "FRF" as the next 3 characters it
receives. If at any time it gets something different, it will go back to looking for the
first "R". Once the header is received, it will load the packet data but not put it to
use until receiving the checksum and comparing it with its own calculated
checksum. If the packet received has a checksum matching the one transmitted,
the data will be put to use.
The communication explained is unidirectional. While a bi-directional protocol can
offer many added benefits, the unidirectional protocol described works fine when
the transmitter retransmits its data and an occasional bad packet doesn't greatly
impact the operation of the system. This protocol offers means for avoiding the
use of bad data while staying simple and inexpensive. It is a good protocol for use
in applications such as wireless door sensors, motion sensors, and simple
switches.

www.wzmicro.com

